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Abstract. In the present paper a class of nonlinear squeezed vacuum and first order excited squeezed states
are introduced. Under conditions on the non-linearity function, the first order excited squeezed states are
realizations of the SU(1,1) group. However, when the condition of the nonlinear function being unitary
is removed, these states are defined as eigenstates of certain operators. Some of the properties of these
states are investigated for the case of trapped ions. The normalized second-order correlation function, the
phase properties, the quasiprobability distribution function and the position distribution of the nonlinear
squeezed vacuum and first order excited squeezed states are discussed.

PACS. 42.50.-p Quantum optics – 42.50.Dv Nonclassical states of the electromagnetic field, including
entangled photon states; quantum state engineering and measurements

1 Introduction

An important concept that emerges from the study of
a quantum harmonic oscillator is the notion of coherent
states [1–5]. These states defined as eigenstates of the
annihilation operator â provides us with a link between
quantum and classical oscillators. Historically these states
corresponding to the Heisenbereg-Weyl algebra were first
constructed by Schrödinger [1]. They can be produced by
acting on the vacuum states |0〉 by the Glauber displace-
ment operator D̂(α) = exp(αâ† − α∗â), where â† is the
reaction operator and α is a complex number and α∗ its
conjugate [2]. Moreover, a coherent state is a phase co-
herent superposition with Poissonian distribution of num-
ber states. They are a set of minimum uncertainty states,
which are as noiseless as the vacuum state. Solutions of the
Schrödinger equation for a charge in a magnetic field cor-
responding to non-spreading wave packets with a classical
dynamics-the coherent states in the modern terminology-
were first built by Darwin as early as in 1928 [6]. More
recently, the coherent states in the magnetic field problem
have been extensively studied by Malkin and Manko [7],
and Feldman and Kahn [8] (see also Refs. [9–11]). In the
coherent states, the quantum uncertainties in the X- and
Y -coordinates of the Larmor center are equal. Generaliza-
tions of the coherent states appear as nonlinear coherent
states [12,13] and f -coherent state [14], which are eigen-
states of the operator âf(n̂) where f(n̂) is a function of the
number operator n̂. The generalization has been extended
to include k-photon coherent states by G D’Ariano and
coworkers [15–17] and by Netto and coworkers [18]. Some
of their properties have been studied and their time evolu-
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tion under the action of the Hamiltonian of free harmonic
oscillator [18] or an harmonic oscillator [19].

Another class of the minimum uncertainty states is
the class of squeezed states [20,21]. The squeezed state
is the eigenfunction of an operator, b̂. This operator is
a linear combination of the creation â† and destruction
â operators of the field. The mixing of the operators is
controlled by means of a variable r, which is called the
squeezing parameter, b̂ = â cosh(r) + â† sinh(r)eiφ. Thus
when r = 0 the coherent state results [1–5,20,21]. These
states can be produced by acting with the squeezing op-
erator Ŝ(z) = exp(zâ†2/2− z∗â2/2) on the coherent state
|α〉, where z is a complex number. Squeezed states have at-
tracted much attention during the past three decades [22].
These states are important because they can achieve lower
quantum noise than the zero-point fluctuations of the
vacuum or coherent states. Thus they provide a way of
manipulating quantum fluctuations and have a promis-
ing future in different applications ranging from optical
communications to gravitational wave detection [22]. In-
deed, squeezed states have been explored in a variety of
non-quantum-optics systems, including classical squeezed
states [23]. Actually there are a number of suggested,
and actual, applications of these states in quantum infor-
mation processing including: quantum cryptography [24],
quantum teleportation [25], dense coding [26] and quan-
tum communication [27] to name but a few. They have
also been proposed for high precision measurements such
as improving the sensitivity of Ramsey fringe interferom-
etry [28] and the detection of weak tidal forces due to
gravitational radiation.

Various generalizations to the squeezed states have
been done by Dodonov et al. [29,30] and Aragone [31].
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Superposition of these states can be thought of as eigen-
states of higher powers of the operator b̂ [32] and this can
be thought of an generalized squeezed states. Other types
of photon squeezed states have been introduced [15,33] by
taking a general type of the squeezing operator depending
on the generalized multiphoton Bose operators or as mini-
mum uncertainty states [18]. Some of their properties have
been discussed in there papers and also in references [19,
34].

In this paper, the nonlinear vacuum squeezed state
(NLVSS) and the nonlinear first order excited squeezed
states (NLESS) (Sect. 2) are introduced. In Section 3,
the nonlinear squeezing states are constructed when the
non-linearity operator valued function f̂(N̂) is not a
unitary operator. In studying non-classical properties of
fildes, it is natural to introduce nonlinear states as re-
cently reviewed [35]. Some of the non-classical proper-
ties of the present states are discussed, including the au-
tocorrelation function, normal quadrature squeezing and
amplitude-squared squeezing, the phase properties, the
quasi-probability distribution function and the position
distribution when the non-linearity function describes the
motion of trapped ions (Sect. 4). Finally conclusion is
given in Section 5.

2 Nonlinear squeezed states as realizations
of SU(1,1)

It is well-known that optical effects connected with two-
photon physics are often related to the SU(1,1) Lie
group [36–40]. It has been shown that the single- and two-
mode bosonic realizations of the SU(1,1) Lie groups have
immediate relevance to the non-classical squeezing prop-
erties of light [36–40]. As it is well-known the SU(1,1) Lie
group is spanned by the three generators K1, K2 and K3

which satisfy the following commutation relations

[K1, K2] = −iK3, [K2, K3] = iK1, [K3, K1] = iK2.
(1)

The raising (lowering) K+(K−) operator defined by K± =
K1 ± iK2 may be used, to cast the commutation relations
in the following:

[K3, K±] = ±K±, [K−, K+] = 2K3. (2)

For any irreducible representation of SU(1,1), the Casimir
operator K2 = K2

3−K2
1−K2

2 has the form k(k−1)I. Thus
a reducible representation of the group is determined by
the Bergmann number k.

The single-mode squeezed vacuum realization of the
SU(1,1) group is considered by taking the generators in
the form

K− =
1
2
â2, K+ = K†

− =
1
2
â†2, K3 =

1
2

(
N̂ +

1
2

)
(3)

with N̂ = â†â the photon number operator. The Casimir
operator in this case becomes k(k − 1) = −3/16. There-
fore there are two irreducible representations associated

with k = 1/4 and k = 3/4 [36,38]. The state space asso-
ciated with k = 1/4 is the even Fock sub-space with the
orthonormal basis set {|2n〉}, while the space associated
with k = 3/4 is the odd Fock sub-space {|2n + 1〉}. The
squeezed operator

S(z) = exp(ξK+ − ξ∗K−) (4)

is the unitary group operator for the single-mode two-
photon realization with the generators given by equa-
tion (3) and ξ = (z/|z|) tanh |z| = eiφ tanh r.

The SU(1,1) coherent states are the single-mode
squeezed states. For k = 1/4, the squeezed vacuum is
given by
∣∣∣∣z;

1
4

〉
= S(z)|0 = (1 − |ξ|2) 1

4

∞∑
n=0

√
(2n)!
n!

[
ξ

2

]n

|2n〉, (5a)

and for k = 3/4, the first order excited squeezed state is
given by
∣∣∣∣z;

3
4

〉
= S(z)|1〉 = (1−|ξ|2) 3

4

∞∑
n=0

√
(2n + 1)!

n!

[
ξ

2

]n

|2n+1〉.
(5b)

After this brief discussion, we may refer to reference [41]
where the nonlinear squeezed states as realization of the
SU(1,1) group have been introduced. The K-operators are
modified in the following way

K− =
1
2
(âf̂(N̂))2, K+ =

1
2
(f̂ †(N̂)â†)2, (6a)

with f̂(N̂) an operator valued function of the photon num-
ber operator N̂ . For the operator K3 to be in the form (3),
then the operator valued function f̂(N̂) must be a unitary
operator, i.e. f̂ † = f̂−1. Under this condition of f̂ being
unitary, we get

K3 =
1
8

[
(âf̂(N̂))2(f̂ †(N̂)â†)2 − (f̂ †(N̂)â†)2(âf̂(N̂))2

]

=
1
2

(
N̂ +

1
2

)
. (6b)

Therefore the coherent states of SU(1,1) are the non-linear
squeezing states. Consequently the NLVSS is given by

∣∣∣∣z;
1
4

〉
f

= (1 − |ξ|2) 1
4

∞∑
n=0

√
(2n)!

n![f(2n)]!

[
ξ

2

]n

|2n〉, (7a)

while the NLESS is given by
∣∣∣∣z;

3
4

〉
f

= (1 − |ξ|2) 3
4

∞∑
n=0

√
(2n + 1)!

n![f(2n + 1)]!

[
ξ

2

]n

|2n + 1〉,
(7b)

where f(·) is a complex valued function with f̄(·) its
complex conjugate satisfying f f̄ = 1. With [f(n)]! =∏n

i=0 f(i) and [f(0)]! = 1. The states (7) are the SU(1,1)
group realizations by NLVSS and NLESS. Equation (7a)
is a generalization of equation (39a) in reference [42].
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3 The case of non-unitary f̂

Even when the operator valued function f̂(N̂) is not a
unitary operator, one can still define non-linear squeezed
states [41]. If we have

Â = âf̂(N̂), Â† = f̂ †(N̂)â†. (8a)

Then the canonical conjugate operators are

B̂ = â
1

f̂ †(N̂)
, B̂† =

1

f̂(N̂)
â†. (8b)

Then the commutation relations

[Â, B̂†] = 1, [B̂, Â†] = 1. (8c)

are found, but [Â, B̂] �= 0.
There is no loss of generality to assume f to be a well

behaved real function which we suppose in what follows.
To construct non-linear squeezed states of the form (7)
when f is not a unitary operator, we look for the eigen-
states of the operator

Ĉ = (1 − |ξ1|2)−1/2(Â − ξ1B̂
†) (9)

with eigenvalue zero. That is for the NLVSS we look for
the solutions of the equation

Ĉ|Ψ〉 = 0. (10)

It is straightforward to find the expression

|Ψ〉 = N

∞∑
n=0

√
(2n)!

n![f(2n)]!

[
ξ1

2

]n

|2n〉, (11a)

with N given from

|N |−2 =
∞∑

n=0

(2n)!
(n!)2[f(2n)!]2

[
ξ1

2

]2n

. (11b)

While the NLESS are the solutions of the eigenvalue equa-
tion

Ĉ2|Φ〉 = 0. (12)

Carrying out the calculations, it is easy to find that these
states are composed only of the odd Fock states and are
given by

|Φ〉 = N ′
∞∑

n=0

√
(2n + 1)!

n![f(2n + 1)]!

[
ξ1

2

]n

|2n + 1〉, (13a)

with N ′ the normalization constant given by

|N ′|−2 =
∞∑

n=0

(2n + 1)!
(n!)2[f(2n + 1)!]2

[
ξ1

2

]2n

. (13b)

The formulae (11) and (13) are generalizations of equa-
tions (5) and formally similar to equation (7) which are the
squeezed states and non-linear squeezed states realizations

of the SU(1,1) group for the different Bergmann numbers.
However, the non-linearity function f(n) is no longer a
unitary operator as in Section 2. For the states (11) and
(13) to exist then the nonlinearity function f(n) has to
be chosen such that the normalizing constant N and N ′
must be bound.

We may look at the functions |Ψ〉 and |Φ〉 as results of
application of exponential operators on the states |0〉 and
|1〉. In effect we have

|Ψ〉 = Nexp
[
1
2
ξ1B

†2
]
|0〉, |Φ〉 = N ′exp

[
1
2
ξ1B

†2
]
|1〉,
(14)

where B† is given by (8b). In what follows we discuss some
of the statistical properties of the NLVSS and NLESS.
Generation of nonlinear states with arbitrary nonlinearity
functions can be engineered using a number of laser fields
in trapped ions experiments for the quantized states of the
atomic centre-of-mass motion [43].

4 Non-classical properties

In this section we shall study the non-classical properties
such as, sub-Poissonian effect, normal quadrature squeez-
ing, amplitude squared squeezing, quasi-probability distri-
bution functions, quadrature distribution function and the
phase probability distribution function for the NLVSS |Ψ〉
of equations (11) and of the NLESS |Φ〉 of equations (13).
As it has been just mentioned at the end of the last section
arbitrary nonlinearity functions can be tailored at well to
produce nonlinear states [43]. In the present work the non-
linearity function will be taken as f(n̂) =

√
n̂ and f(0) = 1

[44]. A choice of this type appears in Hamiltonians describ-
ing interaction with intensity-dependent coupling between
a two level atom and the electromagnetic field [45]. In con-
trast to the study of [19,46], we calculate the expectation
values of the operators â and â† and their powers instead
of the deformed operators. In what follows some of the
nonclassical effects will be discussed.

4.1 Sub-Poissonian distribution

Now, we shall employ the Glauber second-order autocorre-
lation function to study the sub-Poissonian effect on the
present states given by equations (11) and (13) and we
take ξ = eiφ tanh r with φ = π. The Glauber second-order
correlation function g(2)(0) is defined by:

g(2)(0) =
〈a†2a2〉
〈a†a〉2 =

〈n̂2〉 − 〈n̂〉
〈n̂〉2 . (15)

For the choice f(n) =
√

n then,

|N | = |N ′| =
[ ∞∑

n=0

1
(n!)2

[
tanh r

2

]2n]− 1
2

.
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The expectation value of the number operator n̂ = â†â for
the NLVSS (11), is given by

〈n̂〉V = |N |2
∞∑

n=0

(2n)
1

(n!)2

[
tanh r

2

]2n

, (16a)

and for the NLESS (13), it is given by

〈n̂〉E = |N |2
∞∑

n=0

(2n + 1)
1

(n!)2

[
tanh r

2

]2n

= 〈n̂〉V + 1. (16b)

While the expectation value of n̂2 for the NLVSS is
given by

〈n̂2〉V = |N |2
∞∑

n=0

(2n)2
1

(n!)2

[
tanh r

2

]2n

, (17a)

and for the NLESS is given by

〈n̂2〉E = |N |2
∞∑

n=0

(2n + 1)2
1

(n!)2

[
tanh r

2

]2n

= 〈n̂2〉V + 2〈n̂〉V + 1. (17b)

A light field has a sub-Poissonian distribution if g(2)

(0) < 1 which is a nonclassical effect, super-Poissonian
distribution if g(2)(0) > 1, which is a classical effect
and Poissonian distribution (characteristic of the coher-
ent state) if g(2)(0) = 1.

In Figure 1a, the plot for g(2)(0) of the NLVSS exhibits
super-Poissonian behaviour for the distribution. But in
Figure 1b, the plot for g(2)(0) of the NLESS exhibits sub-
Poissonian behaviour for the distribution for small values
of r. Compare the relation between the expectation values
of the operators in the NLVSS and their counter parts in
the NLESS as it is stated in equations (16b) and (17b).
But as the value of r starts to increase we find that the
state shows super-Poissonian behaviour as r > 0.3.

4.2 Normal quadrature squeezing (NQS)

The investigation of NQS is based on defining the two field
quadratures

X̂1 =
1
2
(â + â†) and X̂2 =

1
2i

(â − â†). (18)

These quadratures satisfy the commutation relation

[X̂1, X̂2] =
i

2
. (19)

Therefore the uncertainty relation for X̂1 and X̂2 is
given by

(∆X̂1)2(∆X̂2)2 ≥ 1
16

. (20)

(a)

(b)

Fig. 1. Autocorrelation function of the NLVSS (a) and for the
NLESS (b).

where the quadrature variances is defined

(∆X̂i)2 = 〈X̂i
2〉 − 〈X̂i〉2, i = 1, 2. (21)

The field is said to be squeezed if ∆X̂2
i ≤ 1/4 (i = 1 or 2).

Then NQS holds if the squeezing parameters V (x1) and
V (x2) satisfy the following conditions

V (X1) = 2(∆X̂1)2 − 1
2

= Re〈â2〉 + 〈n̂〉 − 2(Re〈â〉)2 < 0, (22)

V (X2) = 2(∆X̂2)2 − 1
2

= 〈n̂〉 − Re〈â2〉 + 2(Im〈â〉)2 < 0. (23)

The squeezing parameters depend on the expectation val-
ues of the creation and annihilation operator (â† and â)
and their powers. From equations (11) for NLVSS, the
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Fig. 2. Normal squeezing of the NLVSS.

expectation values of the operators â and â2 are

〈â〉V = 0, (24a)

〈â2〉V = |N |2
[
− tanh r

2

] ∞∑
n=0

√
(2n+1)(2n+2)
(n!)(n+1)!

[
tanh r

2

]2n

.

(25a)

Also from equation (13) for NLVSS, the expectation values
of the operators â and â2 are

〈â〉E = 0, (24b)

〈â2〉E = |N |2
[
− tanh r

2

] ∞∑
n=0

√
(2n+2)(2n+3)
(n!)(n+1)!

[
tanh r

2

]2n

.

(25b)

From equations (22) and (24a, 24b) it is obvious that
V (X1) is always > 0 and hence this quadrature can
not show any squeezing in neither NLVSS nor NLESS.
Now V (X1) and V (X2), which represent the NQS for
the NLVSS are calculated and the results are presented
in Figure 2. From this figure it is seen that squeezing in
the quadrature V (X2) increases by increasing the squeez-
ing parameter r. Numerical calculations of the NQS of
the NLESS show that squeezing does not occur in either
quadrature. This implies that only the NLVSS exhibits
quadrature squeezing.

To look at the rotated quadratures, we define

X̂1(θ) =
1
2
(âeiθ + â†e−iθ) and X̂2(θ) =

1
2i

(âeiθ − â†e−iθ).

Taking into account the results (24, 25), we reach the fol-
lowing

V (Xj(θ)) = V (Xj) + 2〈â2〉sin2θ, j = 1, 2.

This shows that the fluctuations in the rotated quadra-
ture are larger than the non rotated. This means that no
normal squeezing appears for these states.

4.3 Amplitude squared squeezing (ASS)

Now we use the concept of ASS introduced by Hillery [47].
This type of squeezing arises in a natural way in second-
harmonic generation and in a number of non-linear optical
processes.

When we study ASS for any state, our problem may
be treated by introducing the field quadrature operators

Ŷ0 =
1
4
(ââ† + â†â), (26a)

Ŷ1 =
1
4
(â2 + â†2), (26b)

Ŷ2 =
1
4
(â2 − â†2). (26c)

Operators Ŷ1 and Ŷ2 satisfy the commutation relation

[Ŷ1, Ŷ2] = iŶ0. (27)

So that the uncertainty principle applied to Ŷ1 and Ŷ2 is

(∆Ŷ1)2(∆Ŷ2)2 ≥ 1
4
|〈Ŷ0〉|2. (28)

ASS holds if

S(Ŷ1) = Re〈â4〉 + 〈n̂2〉 − 〈n̂〉 − 2(Re〈â2〉)2 < 0, (29a)

S(Ŷ2) = 〈n̂2〉 − 〈n̂〉 − Re〈â4〉 + 2(Im〈â〉)2 < 0. (29b)

we can calculate the expectation value for â4 of the NLVSS
and get

〈â4〉 = |N |2
[
tanh r

2

]2

×
∞∑

n=0

√
(2n + 4)(2n + 3)(2n + 2)(2n + 1)

(n!)(n + 2)!

[
tanh r

2

]2n

,

(30a)

and the expectation value for â4 of the NLESS as

〈â4〉 = |N |2
[
tanh r

2

]2

×
∞∑

n=0

√
(2n + 5)(2n + 4)(2n + 3)(2n + 2)

(n!)(n + 2)!

[
tanh r

2

]2n

.

(30b)

Now S(Y1) and S(Y2), which represent the ASS are cal-
culated and the results are presented in Figure 3. From
Figure 3a it is seen that S(Y2) for the NLVSS is less than
zero while S(Y1) is greater than zero for r > 0. Also,
in Figure 3b it is seen that S(Y1) for the NLESS is less
than zero while S(Y2) is greater than zero for a wide range
of r. These imply that the states exhibit ASS. However the
NLVSS exhibits ASS in the S(Y2) while NLESS exhibits
ASS in the S(Y1).
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(a)

(b)

Fig. 3. Amplitude squared squeezing for NLVSS (a) and for
NLESS (b).

4.4 Phase distribution

The notion of the phase in quantum optics has found
renewed interest because of the existence of phase-
dependent quantum noise. In this section, the phase prop-
erties using the Pegg-Barnett method [48,49] are studied.
This method is based on the phase states |Θm〉, which are
defined as

|Θm〉 =
1√

s + 1

s∑
n=0

exp(inθm)|n〉, (31)

where

θm = θ0 +
2πm

s + 1
; m = 0, 1, ..., s. (32)

The value of θ0 is arbitrary. The set {|Θm〉} indicates a
specific bases set of (s + 1) mutually orthogonal phase
states. In fact the phase states |Θm〉 are eigenstates of the

Hermitian phase operator Φ̂θ given by

Φ̂θ =
s∑

m=0

θm|Θm〉〈Θm|. (33)

The expectation values are calculated in the finite dimen-
sional space and after that the limit s → ∞ is taken. The
state of the form

|b〉 =
s∑

m=0

bneinΨ |n〉 (34)

is called a partial phase state [48], where bn are real and
positive and Ψ is a phase. From equations (31) and (34),
one can calculate the expectation values of the phase op-
erator and its moments. However, we shall concentrate on
the phase probability distribution. This distribution for
the partial phase state of equation (34) is given by

P (θ) = |〈Θm|b〉|2. (35)

Since the density of phase states is (s+1)/2π, thus in the
continuum limit s → ∞, equation (35) reduces to

P (θ) =
1
2π

[
1 + 2

∑
n>m

∑
m

bmbn cos[(n − m)θ]
]
. (36)

In what follows one calculates the phase distribution func-
tion for the present states given by equations (11) or (13).
It is found to be the same for both states and is given by

P (r, θ) =
1
2π

(
1 + 2|N |2

∞∑
n=1

n−1∑
m=0

1
n!m!

[
tanh r

2

](n+m)

× cos[2(n − m)θ]
)

. (37)

In Figure 4, P (r, θ) as the Pegg-Barnett phase distribution
given by equation (37) is plotted against the parameter r.
At the squeezing parameter r = 0, then P (r, θ) = 1/2π,
and the phase is lost because only the vacuum state or
the first excited state is presents the state (11) or (13).
But at r increases, the phase starts to build up, and the
information about the phase can be attained as a two-peak
structure with peaks at θ = ±π/2.

4.5 Quasi-probability distribution functions

It has been shown from earlier studies [50–53] that the
quasi-probability (Wigner-Moyal W -, Husimi-Kano Q-
and Glauber-Sudarshan P -) function, are important for
the statistical description of a microscopic system and pro-
vide insight into the non-classical features of the radiation
fields. In this section, we concentrate on the W -functions
only.

One can introduce the symmetrically ordered CS(λ)
and anti-normally ordered CA(λ) characteristic function
through the definitions

CA(λ) = Tr
(
ρ̂e−λ∗âeλâ†)

, CS(λ) = Tr
(
ρ̂e(λâ†−λ∗â)

)
(38a)
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Fig. 4. The phase distribution function for NLVSS.

where ρ̂ is the density operator and λ a complex number.
It is easy to prove that [53,54]

CS(λ) = CAe
1
2 |λ|2 . (38b)

The Q-function and W -function are the Fourier trans-
forms of the characteristic function CA(λ) and CS(λ) re-
spectively, i.e.

CA(λ) =
1
π

∫
(〈α|ρ̂e−λ∗âeλâ† |α〉) d2α

=
∫

Q(α)e(λα∗−λ∗α) d2α (39a)

where
Q(α) =

1
π
〈α|ρ̂|α〉 (40)

and

CS(λ) =
1
π

∫
(〈α|ρ̂eλâ†−λ∗â|α〉) d2α

=
∫

W (α)e(λα∗−λ∗α) d2α (41a)

with

W (α) =
1
π2

∫
CS(λ)e(αλ∗−λα∗) d2λ. (41b)

The W -function can be expressed in terms of expectation
values over displaced Fock states namely [52]

W (α) =
2
π

exp−|α|2
∞∑

l=0

(−1)l〈α, l|ρ̂|α, l〉 (42)

where the displaced Fock state

|α, l〉 =
∑
m

Cm(α, l)|m〉, (43)

with

Cm(α, l) = 〈m|α, l〉

= e−
1
2 |α|2

√
l!
m!

α(m−l)L
(m−l)
l (|α|2), (m > l).

(44)

Taking ρ̂ = |Ψ〉〈Ψ | of equations (11) the NLVSS, therefore
the expression for the W -function is thus given by

W (α) =
2
π

exp(−2|α|2)
[ ∞∑

n=0

ρ2n,2nL0
2n(4|α|2)

+
∞∑

m=1

m−1∑
n=0

ρ2m+2n,2n

√
(2n)!

(2n + 2m)!

× L2m
2n (4|α|2)

[
(2α∗)(2m) + (2α)(2m)

] ]
(45a)

where the associated Laguerre polynomial L2m
2n (4|α|2) is

given by:

L2m
2n (4|α|2) =

2n∑
l=0

(−1)l (2n + 2m)!(4|α|2)l

(2n − l)!(2m + l)!l!
.

Taking ρ̂ = |Φ〉〈Φ| of equations (13) the NLESS, therefore
the expression for the W -function is thus given by

W (α) = − 2
π

exp(−2|α|2)
[ ∞∑

n=0

ρ2n+1,2n+1L
0
2n+1(4|α|2)

+
∞∑

m=1

m−1∑
n=0

ρ2m+2n+2,2n+1

√
(2n + 1)!

(2n + 2m + 2)!

× L2m+1
2n+1 (4|α|2)[(2α∗)(2m+1) + (2α)(2m+1)]

]
. (45b)

In Figure 5a, W (α) according to (45a) for NLVSS is plot-
ted against the parameter α = x + iy. At r = 0 the
state reduces to the vacuum state and the figure shows
the usual Wigner function for the vacuum state which is
always positive and Gaussian. As r increases, Figure 5a we
note that interference pattern as well as squeezing are ex-
hibited. Furthermore, negative values are attained by the
Wigner function for the nonlinear squeezed state which is
not present for the squeezed vacuum state. In Figure 5b,
W (α) according to (45b) for NLESS is plotted against the
parameter α = x+ iy. The state |1〉 is present when r = 0
and hence its usual function is the result when one takes
r = 0. In Figure 5b, as r increases the negative value
at the origin with some peaks surrounding this dip are
shown. Effect of squeezing can be observed in the asym-
metry around the x- and y-axes.

4.6 Position distribution

Now let us investigate the position distribution P (x, r),
which can be measured in homodyne processes [55]. The
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(a)

(b)

Fig. 5. Wigner function for NLVSS (a) and for NLESS (b).

position distribution can be evaluated via the Wigner
function through the relation

P (x, r) =
∫ ∞

−∞
W (x + iy, r)dy. (46)

Therefore if one uses equations (45), then the position
distribution for the NLVSS becomes

P (x, r) =

√
2
π

exp(−2x2)|N |2
∞∑

n=0

1
2(2n)(2n)!(n!)2

×
[
tanh r

2

]2n[
H2n(

√
2x)

]2

, (47a)

(a)

(b)

Fig. 6. Position distribution for NLVSS (a) and for NLESS (b).

and for the NLESS becomes

P (x, r) = −
√

2
π

exp(−2x2)|N |2
∞∑

n=0

1
2(2n+1)(2n + 1)!(n!)2

×
[
tanh r

2

]2n[
H2n+1(

√
2x)

]2

, (47b)

where Hm(z) is the Hermite polynomial of degree n which
is given by

Hm(z) =
[m/2]∑
s=0

(−1)s m!(2z)(m−2s)

s!(m − 2s)!
. (48)

In Figure 6a, P (x, r) of equation (47a) is plotted against
the variable x for different values of r. In this figure,
P (x, r) is always positive with almost Gaussian shape.
The maximum for P (x, r) is attained at x = 0 and its
value decreases by increasing r. It is observed that at
x 	 ±0.75 the curves have the same values of (	0.25). In
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(a)

(b)

Fig. 7. Position distribution for NLVSS (a) and for LNVSS (b).

Figure 6b, P (x, r) of equation (47b) is plotted against the
variable x for different values of r. In this figure, P (x, r)
attains negative values, it starts at x = 0 with the value
P (0) = 0 for all r. As x moves away from the center,
the value of P decreases to a minimum. After that it in-
creases to reach the value zero as |x| > 3. For the values
of r depicted, we find that all curves meet at |x| = 1.13
at the value P (±1.13, r) = −0.3. In Figure 7a, P (0, r)
of equation (47a) is plotted against the variable r. As
can be seen the maximum values decreases as r increases
but it settles at a value (	0.71) for r > 3. In Figure 7b,
P (0.68, r) of (47b), is plotted against the variable r. In
this figure, the minimum value for P (0.68, r) exhibits in-
crease as r increases. It saturates at r 	 3.76 at the value
P (0.68, 3.76) = −0.487.

5 Conclusion

A class of NLVSS and NLESS has been presented. Gen-
eration schemes have been mentioned. The states have

been constructed and the case of f(n̂) =
√

n̂ has been
chosen as the nonlinearity function. The effect of the non-
linearity function on the different characteristics of the
states has been discussed. The autocorrelation function
has been discussed and sub-Poissonian distribution has
been shown to exist for certain choice of the squeezing pa-
rameter. Squeezing phenomena have been discussed and
shown to exist for these states. The phase distribution has
been computed and two peaks have been exhibited. The
Wigner function has been calculated and investigated for
such class. Also the position distribution has been calcu-
lated and the saturation value of the squeezing parameter
has been determined. An earlier investigation [41] took
the non-linearity function describing the center-of-mass
motion of trapped ions. Further investigations concerning
the form of the non-linearity function may be carried out
to show the rich properties of these states. Comparisons
between the vacuum and the first order excited classes are
marked. Finally, these states may find applications in re-
lated fields of quantum optics and quantum information
as mentioned in the introduction.

The author would like to thank the referees for their constric-
tive comments that helped to improve the text in many ways.
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